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Consistency-Based Fault Isolation for Uncertain Systems
with Applications to Quantitative Dynamic Models

Colin N. Jones 1 and Gregory W. Bond 2 and Peter D. Lawrence 3

Abstract. This paper presents the Probabilistic General Diagnostic these comparisons by the discrete values typically used in qualitative
Engine (PGDE), a novel method of offline consistency-based fault methods. Second, the nature of dynamic systems is that they often
isolation. Many existing proposals require qualitative logic mod- have states which are not directly measurable. When the model is
els for consistency-based diagnosis due to their ability to speed the simulated using only the equations from a few components, it is often
search for conflict sets through the use of an ATMS. However, for the case that many of the states will become unknown. If no conflict
many applications, quantitative dynamic models are preferred or al- is observed, we reason that a possible diagnosis has been identified,
ready available. The key strength of the PGDE is that it allows the use however, it is impossible to know if there would have been a conflict
of any modelling language for which an appropriate calculation en- if these states had been known. As a result, the underconstrained na-
gine can be written. It also offers graceful degradation in the presence ture of dynamic systems reduces the resolution of fault isolation pro-
of uncertainty, commonly caused by noise or modelling errors. Fi- cedures and this must be taken into account in any diagnostic method
nally, given perfect knowledge, it can be shown that the PGDE com- dealing with these models.
putes the same result as existing consistency-based diagnosis meth- The PGDE algorithm attempts to deal with these difficulties by
ods. To demonstrate the performance of the algorithm, we have used maintaining a belief distribution for each possible diagnosis. Since
a quantitative dynamic model of the fluid power circuit of a single- these distributions are not limited to discrete-valued consistency
degree of freedom hydraulic test bench and developed an appropri- measures, the PGDE is able to more accurately interpret interme-
ate calculation engine for computing consistency between measured diate non-boolean consistency assessments. They are also updated
values and predicted results. Various failures were generated on the throughout the duration of the diagnostic procedure, and conclusions
physical test bench and the PGDE isolated the faults with approxi- about the consistency of sets of components with observations are
mately 85% accuracy. not drawn until sufficient information has been processed. In Sec-

tion 2, the proposed algorithm is laid out in a step-by-step fashion,
1 INTRODUCTION including consideration of its computational complexity in Section

2.5. Next, Section 3 presents a non-trivial example hydraulic circuit
Consistency-based diagnosis has at its heart the search for a subset of and summarizes some diagnostic results obtained by the PGDE. Fi-
the full model such that predictions made using the subset are con- nally, the paper closes with a discussion of conclusions and future
sistent with sensor measurements. This search space is exponential directions of research in Section 4.
in the number of model components and so a great deal of attention
has been given to developing efficient algorithms. Much progress has
been made by utilizing the properties of propositional logic and qual- 2 PGDE ALGORITHM
itative models ([10, 8, 1] to name a few) but the problems associated The model used in a consistency-based algorithm is a set of con-
with more complex dynamic systems have still to be solved in gen- straints on the signals passing through the system. A failure can be
eral. The Probabilistic General Diagnostic Engine (PGDE) addresses declared when these signals are inconsistent with the constraints. The
some of these issues in a general framework that applies to any model goal of the algorithm is then to locate a subset of these constraints,
for which an appropriate "consistency measure" can be formulated, which when removed from the model, restore consistency between

There are many devices for which quantitative dynamic models the predicted and observed behavior. This process can proceed in an
either already exist or whose behavior can best be described by a set iterative manner, selecting a set of constraints to remove and simu-
of differential equations. The cost of developing qualitative models lating the system until a feasible set is found.
exclusively for the purpose of diagnosis is prohibitive, thus making We begin by defining the system as in [7]:
the adaptation of qualitative methods to quantitative dynamic models
an important topic. Models of this type present two new challenges Definition 1 A system is a triple (SD,COMPSOBS) where:
to the diagnostician: First, quantitative dynamic models require the
comparison of sets of signals to determine consistency. Due to noise 1. the components (COMPS) are a finite set ofconstants

and modelling errors, it can be difficult to represent the results of 2. the system description (SD) is a set ofconstraints
3. the observations (OBS) are measurements ofthe physical device
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couver, BC, V6T 1Z4, Canada SD, n SD0 1j - 0 Vci - cj. The set of all possible failures is



given by the power set of COMPS and for each element A C updating the beliefs (steps 3 and 4), choosing a new set to test for
P(COMPS), define SDA , UCe, SD,. This allows the defi- consistency via TP(.) (step 1), deciding when to stop and interpreting
nition of components which contain large numbers of constraints or the final belief distributions (steps 5 and 6).
complex behaviors as well as hierarchies of components. The cardi-
nality of a set of constraints X C SD is written as IX1; it is a system- 2.1 Belief update
dependent real number, representing the notion of how "large" the set
X is when compared to SD. Once a possible diagnosis, A, has been selected, TP(.) is used to find

Reiter's original work [7] relies on a 'theorem prover', the consistency measure, pA, and the constraints which were used to
TP(SD, D7(A, COIPS\A), OBS), which returns true if the par- compute it, AA. The goal is to determine what the consistency mea-
tial model containing only the constraints in the complement of sure has shown about each of the subsets of COM PS, using AA as
SDA, (SDA)0 , is consistent with the observations OBS and false a guide. Assuming no fault models, two properties of constraint sys-
otherwise; consistency implying that the components A are a possi- tems allow the consistency measure of the set A to affect the beliefs
ble diagnosis. Here the theorem prover is redefined to return a contin- of other sets: supersets of diagnoses are diagnoses (removing more
uous measure of how consistent the constraints (SDA)0 are with the constraints will not make the system inconsistent) and subsets of in-
observations OBS. It is possible that the system defined by (SDA)0  verse conflicts are inverse conflicts (adding constraints will not make
with OBS as inputs may be underconstrained. Thus, for some of the the system consistent). Using these facts, the supersets of A are first
constraints in (SDA)0 , it is impossible to verify if they have, or have considered and the information derived from pA and AA is used to
not, been violated. If this system is consistent then it is not valid to update the beliefs that they are diagnoses (BDAP (x) VAp D A).
say that A is a diagnosis as the faults might have been in the con- Similarly, the beliefs that the subsets are inverse conflicts are also
straints that could not be tested. This situation is very common in updated (BICAx (x) VA(, C A).
dynamic systems with state as they are inherently underconstrained
[4]. To deal with this, the constraints which were used during the 2.].] Update belief in diagnosis
simulation of (SDA)0 are returned by TP(.) as defined below.

We begin by assuming that pA , 1, indicating that the observations
Definition 2 Let A G P(COMPS). Define thefunction TP(.,.) : are consistent with the constraints (SDA)0 . The goal is to determine
SD x OBS -i JR x SD as: to what degree this evidence shows that each set is a diagnosis. The

first step is to locate the base set, AB, for the set (SDA)0 as defined
(pA, AA) = TP((SDA)0 , OBS) below in Definition 3. This is the set with the most components of

which none have had any of their constraints used during the calcula-
Where. tion of pA. Referring to Figure 2, in which TP((SD{ I 2.ý3 )', OBS)

"* pA E [0, 1], 1 implies constraints (SDA)0 are consistent with was called, the base node is AB = {1, 2,3, 4}. IfA - AB, then the

the observations OBS, and 0 implies inconsistency constraints of at least one component have not been considered due
to the assumption that the components in A were faulty (in Figure

"* AA C (SDA) are, the constraints which TP(.) had suffjicient 2 this would be component 3). In essence, TP(.) cannot distinguish

information to apply during the calculation oJpA between any set A' such that A C A' C AB, since whenever the
constraints associated with the components in A are not considered,

Two belief distributions over the states {true, false, unknown} are neither are those of AB, which implies that pA = pA, = P/AB.

maintained for each element A E P(COMPS). These are rep- This is a limitation of the model and the placement of the sensors; as

resented by the probability mass functions BDA (x) and B/CA (x) a result the best the algorithm can do is incriminate AB and inform

with domains {true, false, unknown}. BDA(true) is the belief the user of this sensor deficiency. Because the consistency measure

that the evidence, provided by calls to TP(.), shows that A is a di- would be the same for all of the sets A', such that A C A' C A B,

agnosis. BDA (false) is the belief that the evidence does not show the sets are marked and ignored in subsequent calls to TP(.). For cer-

that A is a diagnosis. It does not mean that the evidence does show tain model types these families of sets can be identified a priori and

that A is not a diagnosis as consistency can only incriminate compo- grouped into single components to speed the algorithm [1, 2].

nents, it cannot exonerate them [7]. Finally, BD, (unknowrn) is the Definition 3 Let A C AB C COMPS. Then AB is the base set
probability that it is unknown what the evidence shows, or that there bar Zx •ft
is no evidence. If ,A = 0 then at least one component of A, must

be faulty and we call A' a conflict set [7] and A an inverse conflict. SDA, r AA, 0
B,,A(true) is the belief that the evidence shows that A is an inverse

conflict, BIcA (false) that it doesn't and BA ('unrknoowrn) that the VA' D A B, SDA', n # 0
evidence is unclear.

Initially, all the beliefs are 100% unknown (tFDA(x) If the constraints associated with AB are not considered during
B,(A(x) = {0.0, 0.0, 1.0}). In each iteration, a call is made to TP(.) the call to TP(.), those in (AAx) \ SDA,, are not either (in Fig-
to check if a new set of constraints (SDA)0 , is consistent with the ure 2 this would be the unshaded sections of components 5 and
observations, OBS. The distributions are then updated to reflect the 6). These are the constraints which were not considered that do
simulator's certainty in the consistency of each set of components, not make up a full component. The question is: Is the lack of con-
again with the observations. In this way, the diagnostic engine deter- flict during the computation of pA due to the constraints in SDAB,
mines the components that are most likely to be faulty, as well as a those in (Azx)' \ SDAB, or some combination of the two? The
measure of its confidence in these decisions, safest approach would be to say that this evidence can only increase

A block diagram of the PGDE is shown in Figure 1. The following the belief that some set A' 2D AB which covers all of (AA)' is
sections deal with each stage of the algorithm in detail in the order: a diagnosis (A' { 1, 2, 3, 4, 5, 6} in the example). However, if
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Figure 1. The PGDE Algorithm

' SD iP(Ap is a diagnosis I AA A pA )1) (4)
1 2 1 (AAY ), SDA, I

*SD lAI(A)
Assuming that faults are equally likely to be anywhere in (AA)',

AA the probability that they are in SDA p is given by Equation 4, as the
4 proportion of (AA )' that is covered by SDA,. If all of, or more

than, (AA)' is covered, then the probability that the system will be
consistent is 100%, by the assumption that hA ý 1.0.

This probability is computed assuming ttA 1, when in fact it
may well be less than one. The consistency measure describes our

7 8 9ability to measure how consistent the observations are with the con-
straints AA. The real components A are either consistent or incon-
sistent with observations and it is only the inability of the model and

sensors to perfectly determine which one is true that causes PA < 1.
Therefore the consistency measure can be interpreted as a probabil-
ity that the real artifact is consistent or inconsistent and we assume a

Figure 2. Example nine component system mapping "PC(pA) to [0, 1] defined by the modeler which represents
how probable it is that the real artifact is consistent given p.A.

For each APp D AB we define a belief distribution BD,.A, (x; A)
over the states {true, false, unknown} which represents the belief
that A p is a diagnosis given only the information from calling TP()

(AA) \SDA < SDA B 1, this would be a very conservative ap- on A. The distribution is defined as follows:

proach, in the sense that a set will never be called a diagnosis if it can-
not completely explain the observed behavior, and multiple compo- BD,A, (true; A)

nent failures would be returned more often than they should. In most P p(Ap is a diagnosis I AA A tA -1) • 'PC(pA)
cases, designing models which reduce the size of (AA)' \ SDAB BD,A, (false; A)
will increase the precision of the diagnosis and so we make the as-
sumption that most modelers will aim for this characteristic and as a (1 is1
result assume that I(AA)' \ SDA, is small compared to ISDA, 1. BD,A, (unknown; A)

Under the assumption that the majority of the constraints which 1 - "PC(pA) (5)
were not considered during the computation of aA belong to AsB,
this evidence increases the belief that AB is a diagnosis. However, Equation 5 takes the probability that a set is a diagnosis given AA and
because every superset of a diagnosis is a diagnosis, this evidence that the measure is consistent, and then scales this probability by the
also increases the belief that all of the supersets of AB are diagnoses. certainty that the call to TP(.) returned consistent. This distribution
Therefore for each set Ap D AB the probability that the constraints is now combined with the current beliefs using Bayes' Theorem and
in SDAP can account for the lack of conflict during the computation the Total Probability Theorem.



Let F be the set {true, false, "unknown}. Then the current be- the information from calling TP(.) on A.
lief distribution, BD,,AP (x), is updated by the evidence BD,.A, (x; A)
to the new belief distribution B'XP (x): BA,.A(. (trW:e; A)

B/+ (x) ( (6) P(Ac is an inverse conflict I AA A pA , 0). 7PIC(pA)

L P(B+AP(x) BDýA, (fl) i 1 A BI(,A(,false; A)

fl f2GF (1 - P(Ac is an inverse conflict I AA A A ý 0))
BD.ýp (f2; A) 1) . BD AP(ft) " B.,A,(f2; A) .PIC(pA)

The probabilities P(B+,p (x) I BDAp(fl) 1 A B,('unknow'rn; A)
BA,, (f 2 ; A) = 1) in Equation 6 can be represented by a condi- 1 - P•7C(,A)
tional probability table as shown in Table 1. The first two columns
represent fl and f2 respectively and the last three represent x. The This belief distribution is incorporated into our current belief

values in Table 1 are chosen such that if the current belief is very B/,,cA, (x) in the same manner as discussed in the previous sec-

certain, as defined by the weight of the unknown state, then a new tion. The total probability theorem is again used as in Equation 6

distribution which is very uncertain, will not strongly influence the to compute the new belief distribution/B7+ , 0 (x) from the old one
belief, and vice versa. If the new evidence agrees with our current BA 0 (x) and the new evidence BtAc.A (x; A) using the conditional

belief, then this belief is strengthened, and if it does not then it is probabilities in Table 1.

weakened. The new evidence provided by the call to TP((SDA)0 , OBS) has
now been incorporated into the belief distributions BcA(x) and

Table 1. Conditional Probability Table used to update 3bD,Ap (x) given BOA (x) for all subsets A of COMPS. The next section looks at

BDA3,A (x; A) how to use these belief distributions to choose the next component to

P(B+AP (x) I BD,AP (f) = 1 A BDAp (f2; A) - 1) pass to TP(.).

fl f 2 Trit e Fasýe I Unknown 2.2 Next best set
True True 1.0 0.0 0.0True False 0.5 0.0 0.0 The order in which the subsets of COMPS are tested is crucial to

True Unknown 1.0 0.0 0.0 the speed at which the algorithm will find the diagnoses. There are,
False True 0.5 0.5 0.0 however, several choices which will produce varying results and so
False False 0.0 1.0 0.0 the choice depends largely on knowledge of the system. The follow-
False Unknown 0T0 1.0 0.0 ing properties can be taken into account when developing a heuristic

Unknown False 0.0 1.0 0 search strategy:
Unknown Unknow 0.0 0.0 1.0
Unknown Unknown 01.0 * Failure rates: choose sets of components with a history of failure

* Expected knowledge gain: choose sets of components which are
expected to reduce the unknown portions of the belief distributions
the most. (i.e. BDA('urnknown) and B,•,A('urnknowurn)). See [5]

2.1.2 Update belief in inverse conflict for a derivation.
* Current belief: choose the supersets and subsets of the set cur-

To update the beliefs BIA (x), much the same procedure is followed rently most likely to be a minimal diagnosis to isolate a single
as in the case where the system is consistent, only now the evidence diagnosis as quickly as possible.
suggests that the considered sets are inverse conflicts rather than di- * Principle of Parsimony: choose the sets with the fewest compo-
agnoses. As before, the first step is to locate the set AB, but now it nents as they are more likely to be diagnoses.
is the base set of (AA)' (A B = {7, 8, 9} in Figure 2). (AB)' is the * Execution time: choose the sets with the most components, as
largest set of components such that all of (SDAB ) was used to com- TP(.) will likely take less time to evaluate systems with fewer con-
pute/JA and we again assume that I(SDAB)1 >» IAzx \ (SDAý,)•I. straints.
The evidence provided by p.A suggests that some of the constraints in
(SDAB )j have been violated. Since adding constraints will not take
away the fact that some of these have not been met, every superset 2.3 Stop conditions

of (SDAB ) also contains broken constraints indicating that every The certainties in the potential diagnoses returned by the PGDE in-
subset, Ac,, of AB is an inverse conflict. As before, the probability crease monotonically with each iteration [5]. Thus, the maximum
that the set A( is an inverse conflict is: certainties are achieved when all subsets of P(COMPS) have been

P(A(,, is an inverse conflict I AA A p , 0) passed to TP(.) for testing. Since this is likely to take too long, a de-
cision needs to be made about when to stop. As it is when choosing

_ AAn (SDA ,)O a search algorithm, this decision is mostly heuristic and entirely up
Aix to the modeler. Some examples of criteria are listed here:

We assume a mapping 7PIC(pA) E [0, 1], defined by the modeler, 0 A time limit has been reached
which represents the probability that the real artifact is inconsistent * The sum of all of the subsets of P(COAIPS)'s knowledge has
given pA. This mapping is then used to compute a distribution, risen above some limit
Bizxc(xz;A), over the states {true, false, urrknown} which * The knowledge gained per call to TP(.) has fallen below some
represents the belief that the set Ac is an inverse conflict given only level



"* Apercentage ofthe subsets of COAIPS have been tested Let Api D A,i 1._,n, Vi -i jAp- pa .
"* At least one minimal diagnosis has been found with some mini- Define the distribution -D (x) such that:

mum certainty
-D(true) = D(false)

4-D(false) = D(true)
2.4 Most likely minimal diagnoses -D(unknown) = D(unknown)

A minimal diagnosis is a diagnosis such that no proper subset of it is
also a diagnosis. They are of interest as the Principle of Parsimony Define the operator 0 such that A 0 B equals the result of combining
[7] states that the diagnoses with the fewest components are the most A and B using the conditional probability table 3, then:

likely. The minimal diagnoses will have the properties that all of their
supersets will be diagnoses and all of their proper subsets will be DAJ, (x) DA(x)

inverse conflicts. The goal is to determine which sets are most likely 0 DA,, (x) D ... A, D, (x)
to have these properties given the belief distributions BIA(x) and -A, (x) 0 DA(. W
BDA (x).

2.4.1 Combining B,,(x) and B,, (x) Table 3. Conditional Probability Table used to compute C = A 0 B

The two belief distributions BD(x) and B, (x) have been kept sepa- P(C(x) ] A(ft) = 1 A B(.f2 ) = 1)
rate, as they represent different types of information. In order to com- f2x

pute the most likely minimal diagnoses, all of the information needs f f True False Unknown

to be taken into account and as a result they need to be combined. True True 1.0 0.0 0.0
This is done using the conditional probability table shown as Ta- True False 0.0 1.0 0.0True Unknown 1.0 0.0 0.0
ble 2 to compute the combined belief distribution D (x). DA (true) False True 0.0 1.0 0.0
represents the probability that A is a diagnosis, while DA(false) False False 0.0 1.0 0.0
represents the probability that it is not. Note that this is different False Unknown 0.0 1.0 0.0
from BDA(false) as BDA(false) represents the belief that the ev- Unknown True 0.0 0.0 10
idence does not show that A is a diagnosis, whereas DA(false) Unknown False 0.0 0.0 1.0

represents the belief that the evidence does show that A is not a di- Unknown Unknown 0.0 0.0 1.0

agnosis. DA (unknown), represents the belief that we don't know
what the evidence shows. The values in Table 2 are chosen such The result is that D x is true for sets which have all proper-
that if BDA (x) and BRA (x) agree that A is a diagnosis and not ties that a minimal diagnosis should have and false or unknown for
a inverse conflict then DA (true) = 1. However, if they do not all other sets. Because DM(X) is a continuous distribution over the
agree, then we are confused about what the evidence has shown and atesets. Because Dnhno)nis a contiou istribution ovt
D(unnown)ates tre, false, nknon}, a function is needed which allows
formation then 1. Ifnknwnr FA nr Fthe possible diagnoses to be returned to the diagnostician in order
formation then DA(unknowun) =1. from most likely to least, along with a measure of the algorithm's

certainty in the result. The following sorting function is suggested as
Table 2. Conditional Probability Table used to combine 1o(x) and a good balance between certainty in the result and the belief that the

Bi (x) into D (x) set is a minimal diagnosis:
P(DAW(x) BDA(/1) = 1 A BicA(.) = 1)

x DAI, (true) • (I - DA, (Junknowrn)) (8)fl f2 Tr'ue ]False ]Unknown

True True 0.0 0.0 10 Minimal diagnoses can now be returned to the diagnostician in or-
True False 1.0 0.0 0.0 der from the one with the largest value for Equation 8 to the small-
True Unknown 1.0 0.0 0.0False TUew 0.0 1.0 0est. The probability that a set is a minimal diagnosis is equal toFalse True 0.0 1L0 0.0
False False 00 0.0 1.o DA,, (true)/(1 - DAJI( (unknown)) and the certainty in the result
False Unknown 0.0 0.0 1.0 defined by 1 - DMy, (unknown).

Unknown True 0.0 1.0 0.0
Unknown False 0.0 0.0 1.0
Unknown Unknown 0.0 oýo 1.0 2.5 Complexity considerations

Calling TP(.) on every subset of COAIPS is an exponential under-
taking. If the PGDE is run so that the maximum certainty is achieved
in the result, every subset of COAIPS would need to be tested and

2.4.2 Finding the minimal diagnoses the algorithm would indeed be exponential in time. However, a trade-
off can be made between certainty and execution time by using some

Definition 7 below, defines a distribution DAj (x) for each A c of the criteria listed in Section 2.3.
P(COAIPS) which represents the belief that the set A has the prop- Maintaining the distributions AF (x) and R, (x) is exponential in
erties of a minimal diagnosis. space if the entire set P(COAIPS) is considered. However, for ex-

ample, we assume that the likelihood of 40 components failing simul-
Definition 7 Let A c P(COAMPS). taneously in a system of 50 components is negligible. Therefore, the
Let Acj C A, i = 1,..., m, Vi - j Ac, - Ae# algorithm does not require that the distributions BD(x) and BF,(x)



cover all of P(COMPS), but only up to the level where a reason- S-s

able number of simultaneous faults are considered.
As seen in Figure 1 there are four steps to the algorithm which are Main Valve xm ensor

performed in an iterative fashion: choose next set, call TP(.), interpret
the results and update the beliefs BD(x) and B[, (x). This algorithm Head-Side

is primarily intended for the diagnosis of complex dynamic systems
for which TP (.) will require a period of simulation in order to test for E F

consistency and so it is assumed that this call will take a significant qý

period of time. Computing the next set to test can be a function of Rod-Side

P(COAMPS), but it is assumed that the TP(.) will take the majority
of the time. Both the interpretation of the results and the updating q

of the belief states involve only the supersets and/or subsets of the
set under test, which is a relatively small number when compared to
the size of P(COMPS). The final two steps of the algorithm do

involve the entire set P(COAMPS), but as they are not part of the
iterative procedure, their effect on the speed of the algorithm is not AF
significant. ql,,

3 DIAGNOSIS OF A HYDRAULIC CIRCUIT

Figure 4 shows a schematic for a single degree of freedom hydraulic
manipulator used to test the algorithm presented in this paper. The _a

model is made of eight components as seen in Figure 3: the head-side
port of the main valve, the rod-side port of the main valve, the cylin-
der, the manipulator, the rod-side anti-cavitation valve, the head-side Figure 3. Component model of the hydraulic test bench
anti-cavitation valve, the exit filter and the check valve. The behavior
of the components is described by sets of hybrid dynamic equations
which can be found in [6] and [5].

The function TP((SDA)0 , OBS) was implemented using a mod-
ified version of Hybrid Concurrent Constraint programming, or hcc This failure was correctly isolated in all 10 sample runs taking an
[3]. The set of hybrid dynamic equations (SDA)' is passed to the average of 53.1 seconds.
modified hcc, along with OBS which are the time sequences of the * Partially clogged return filter.
sensor values. The system made of (SDA)0 and OBS will likely For two of the five tests run, the filter was returned as the most
be over-constrained and the resulting simulation will contain several likely diagnosis, with the rod-side port of the main valve and the
discrepancies between measured and simulated values. These resid- rod-side anti-cavitation valves together forming a close second.
uals (simulated outputs less measured) will also be time sequences In the remaining three tests the filter was not returned as a diag-
which can be compared to a set of residuals recorded during nor- nosis by itself, but five diagnoses containing the filter and another
mal operation to generate a consistency measure, p.A. During the component were returned as all being very likely. The average cal-
experiments, the system was setup in a position control loop with culation time was 167 seconds.
a sinusoidal input signal at a frequency of 0.25Hz. A period of six * Increased friction in manipulator bearing.
seconds is recorded, encompassing a single extension and retrac- For two of the five tests run, the manipulator was returned as the
tion of the manipulator arm. Six experiments were run, each with only likely diagnosis with very high certainty (96%, 100%). In
the arm under a different failure condition which is common in a two more of the tests it was returned as one-half of a double fault
system such as this [6, 9]. The failures were caused by manual ad- and in the fifth test the algorithm did not get the correct solution.
justment of the three valves and one friction plate shown in Figure These calculations took on average 82 seconds to complete.
4. The faults are assumed to be permanent and to have occurred * Leaks in both hoses connecting the valve to the cylinder.
before the measurements are taken. At each iteration the set to be in In all five tests the four double faults: {rod-side anti-cavitation
passed to TP(.) is selected to maximize the expected decrease i valve, head-side anti-cavitation valve}, {rod-side anti-cavitation
U = EAGP(COKMPS) BICA(vnkno'n) + BA (rnkno'un) and valve, head-side port}, {head-side anti-cavitation valve, rod-side
the algorithm is stopped when the change in U is less than 1% for port} and {head-side port, rod-side port} were returned as being
more than 10 iterations. equally likely with a high degree of certainty (- 85%). For this

The six failures and the results of fault isolation using the PGDE situation, these are the correct diagnoses as one component on the
are as follows. On average, 99.90% of the time taken is spent in rod-side and one on the head-side that can account for the leaks
simulation during the calls to TP(.), while only 0.10% is required for is needed to explain this failure. The average calculation time was
the PGDE calculations. For details refer to [5]. 140 seconds.

"* Leak in the hose connecting the valve to the head-side of the cylin- * Partially clogged return filter and a leak in the head-side hose.
der. In all five tests the algorithm returned the head-side anti-cavitation
This failure was correctly isolated in all 10 sample runs taking an valve or port as the only explanation. The filter causes a much
average of 54.5 seconds, smaller effect on the system and so it is difficult to recognize it

"* Leak in the hose connecting the valve to the rod-side of the cylin- as faulty when other components are misbehaving. The average
der. calculation time was 61 seconds.
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Figure 4. Schematic of experimental test bench
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timation and Pattern Classification, Ph.D. dissertation, University ofcollected and for noise in the simulator, TP(.), to be handled. TheBrthCluba197
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shows that it can be applied effectively to isolate realistic faults in Intelligence, 32(1), 57-96, (1987).
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